Application of integral operator for regularized least-square regression
نویسندگان
چکیده
In this paper, we study the consistency of the regularized least square regression in a general reproducing kernel Hilbert spaces. We characterized the compactness of the inclusion map from a reproducing kernel Hilbert space to the space of continuous functions and showed that the capacity based analysis by uniform covering numbers may fail in a very general setting. We prove the consistency and compute the learning rate by means of integral operator. To this end, we studied the properties of the integral operator. The analysis reveals that the essence of this approach is the isomorphism of the square root operator. ∗Corresponding author
منابع مشابه
Regularized Least Square Regression with Spherical Polynomial Kernels
This article considers regularized least square regression on the sphere. It develops a theoretical analysis of the generalization performances of regularized least square regression algorithm with spherical polynomial kernels. The explicit bounds are derived for the excess risk error. The learning rates depend on the eigenvalues of spherical polynomial integral operators and on the dimension o...
متن کاملConvergence Rate of Coefficient Regularized Kernel-based Learning Algorithms
We investigate machine learning for the least square regression with data dependent hypothesis and coefficient regularization algorithms based on general kernels. We provide some estimates for the learning raters of both regression and classification when the hypothesis spaces are sample dependent. Under a weak condition on the kernels we derive learning error by estimating the rate of some K-f...
متن کاملReproducing Kernel Hilbert Spaces in Learning Theory: the Sphere and the Hypercube
We analyze the regularized least square algorithm in learning theory with Reproducing Kernel Hilbert Spaces (RKHS). Explicit convergence rates for the regression and binary classification problems are obtained in particular for the polynomial and Gaussian kernels on the n-dimensional sphere and the hypercube. There are two major ingredients in our approach: (i) a law of large numbers for Hilber...
متن کاملOptimal Rates for Regularized Least Squares Regression
We establish a new oracle inequality for kernelbased, regularized least squares regression methods, which uses the eigenvalues of the associated integral operator as a complexity measure. We then use this oracle inequality to derive learning rates for these methods. Here, it turns out that these rates are independent of the exponent of the regularization term. Finally, we show that our learning...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 49 شماره
صفحات -
تاریخ انتشار 2009